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YOLOv8を用いたアテンション機構導入による
炎および煙の検出精度向上に関する研究

青木 健1 岡部 誠1

概要：屋外における火災検知において，監視カメラやドローンなどによる映像を用いた検知が注目されてい
る．しかし，固定的な形を持たない炎や煙の識別や，複雑な背景下における見逃しや誤検知が課題となっ

ている．本研究はリアルタイム性に優れた物体検知アルゴリズム YOLOv8をベースに，空間情報とチャ

ネル情報を，効率的に融合する独自のアテンション機構 ESCFBlock（Efficient Spatial-Channel Fusion

Block）の導入を提案する．本アテンション機構は，Coordinate Attentionと Efficient Channel Attention

を並列に配置し，ゲート付き残差結合により，特徴を適応的に強調する．D-fireデータセットを用いた評

価実験の結果，Head 部の P5 層への導入が最も効果的であった．特に，Recall の向上が確認されたこと

は，火災の見逃しを最小限に捉える実用的な成果である．
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1. はじめに

火災は，人的被害のみならず，歴史的建造物や貴重な自

然資源の焼失，さらには莫大な経済的損失をもたらす．こ

うした被害を最小限に抑えるためには，火災の発生を早期

かつ正確に検知し，初期消火や迅速な避難誘導へとつなげ

ることが必要不可欠である．従来，火災検知の主役を担っ

てきたのは，煙感知器や熱感知器といった物理センサで

あった．しかし，これらのセンサには物理的な制約が存在

する．例えば，開放的な屋外施設や，広大な森林地帯など

では，煙や熱がセンサに到達するまでに時間を要し，検知

が遅れるケースが少なくない．また，気流の影響を受けや

すい環境では，発生場所の特定が困難になるという課題も

ある．

こうした背景から，監視カメラやドローンによる映像イ

ンフラを有効活用し，画像認識によって火災を視覚的に検

知する手法や，火災検知用のデータセットの構築が注目を

集めている [1, 2, 3, 4, 5, 6, 7]. カメラを用いた手法は，火災

が発生した瞬間の視覚的変化を捉えることができるため，

物理センサよりも迅速な検知，対応が可能であり，かつ発

生場所を画像上で直ちに特定できるという利点を持つ．し

かし，画像や映像による火災検知には特有の難しさがある．

炎や煙は，車両や歩行者のような固定的，定型的な形状を
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持たない．煙は風によって拡散し，周囲の背景と混ざり合

うことでコントラストが低下する．また，炎は照明条件や

周囲の反射物の影響を強く受け，夕日や赤色の照明などと

誤検知を招きやすい．特に，遠方で発生した小さな火種や，

希薄な煙を精度良く検知することは，従来の画像処理技術

における大きな課題である．

近年，これらの課題を解決する手段として，深層学習を

用いた物体検知技術が飛躍的な発展を遂げている．特に，

YOLO（You Only Look Once）シリーズは，単一のネッ

トワーク内で，物体の位置特定と分類を同時に行うアルゴ

リズムであり，高いリアルタイム性と検出精度の両立を実

現している [8]．本研究で採用した YOLOv8 [9]は，優れ

たアーキテクチャにより，多様な物体検知タスクで成果を

挙げているが，火災検知という極めて高い信頼性が求めら

れる領域においては，さらなる精度向上の余地が残されて

いる．

そこで本研究では，YOLOv8をベースに，空間情報と

チャネル情報を効率的に融合する独自のアテンション機構

ESCFBlock（Efficient Spatial-Channel Fusion Block）を

提案し，高精度かつリアルタイムな火災検知システムを目

指す．この ESCFBlockを YOLOv8ネットワーク内の最

適な階層に組み込むことで，誤検知の抑制と，火災の検出

漏れ防止を同時に達成するモデルを構築し，その有効性を

比較実験により実証する．
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2. 関連研究

2.1 YOLOを用いた火災検知

これまでにも，YOLOを用いた火災検知に関する研究

は数多く行われている．例えば，Douらは YOLOv5 [10]

をベースとした火災検知モデルを提案し，多様な環境下で

のロバスト性を検証した [11]．また，Gaoらは YOLOv8

に対して，双方向での特徴融合を実現するために，ネッ

トワークを再設計し [12]，異なるスケールの火災に対して

も，高い検知能力を示すことを報告している．さらにMa

らは，計算資源の限られたデバイスへの実装を目的とした

YOLOv8の軽量化研究を行った [13]．しかしながら，これ

らの手法において，複雑な背景下での誤検知抑制や，微小

な火災の特徴の検出には課題が残る．

2.2 アテンション機構による精度向上と課題

前節の課題に対し，特定の重要な特徴マップを強調す

るアテンション機構の導入が，検知精度向上のための主

要なアプローチとなっている．Wangらは ResNet [14]に

Squeeze-and-Excitation（SE）[15]ブロックを統合した SE-

ResNetを用いた手法を提案し，森林火災の検知精度を大幅

に向上させた [16]．SEブロックに代表されるチャネルア

テンションは，どのチャネルが火災検知において重要かを

学習することで，背景ノイズの影響を抑制する効果がある．

一方で，SEブロックのような単純なチャネルアテンショ

ンは，Global Average Poolingを用いて空間情報を完全に

圧縮してしまうため，火災が発生している位置に関する詳

細な情報を保持できないという弱点がある．この空間情報

を補うために，Gaoらは空間とチャネルの情報を考慮する

CBAM（Convolutional Block Attention Module）[17] と

いう統合型アテンションを YOLOに導入する手法を提案

している [12]．しかし，既存の統合型のアテンション機構

は，空間情報の抽出に，比較的大きなカーネルを使用する

ことが多く，計算負荷が増大し，YOLOのリアルタイム性

を損なってしまうという懸念もされている．

このように，火災検知における既存のアテンション導入

の研究においては，空間情報の保持能力と計算コストの抑

制というトレードオフの制約を受けており，解決すべき重

要な課題となっている．

3. 事前知識

本章では，本研究で提案する火災検知モデルの基盤とな

る要素技術について概説する．具体的には，まずベースモ

デルとして採用した，物体検知アルゴリズム YOLOv8 [9]

のアーキテクチャについて述べる．続いて，提案手法（ES-

CFBlock）の構成要素となる 2 つのアテンション機構，

Coordinate Attention（CA）[18]および Efficient Channel
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図 1: YOLOv8の構造図

Attention（ECA）[19] の基本原理と演算プロセスについ

て詳述する．

3.1 YOLOv8

本研究で採用した YOLOv8のネットワークアーキテク

チャは，主に Backbone，Neck，Headの 3つのコンポーネ

ントによって構成されている．図 1に YOLOv8の全体構

造図を示す．

■ Backbone Backboneは，入力画像からマルチスケー

ルな特徴抽出を行う役割を担う．CSPNet(Cross Stage Par-

tial Network)アーキテクチャを基盤とし，ピラミッド状の

階層構造を通じて，浅い層では視覚的詳細情報を，深い層

では物体としての意味的情報を段階的に抽出する．

■ Neck Neckは，Backboneによって抽出された異なる

スケールの特徴マップを統合，精製する役割を担う．FPN

（Feature Pyramid Network）（図 1 1O）と PAN（Path Ag-

gregation Network）（図 1 2O）を組み合わせた構造を採用

しており，深い層からの意味的情報と，浅い層からの視覚

的情報を，双方向に伝播させる．これにより，すべての特

徴マップにおいて物体の識別能力と位置特定能力の両方を

強化することを可能にしている．

■ Head Headは，Neckを通じて精製された特徴マップ

を受け取り，最終的な物体の位置特定およびクラス分類を行

う．YOLOv8では，位置特定とクラス分類を独立した経路

で処理している．なお，学習時の損失関数として，位置特定

には，CIoU（Complete IoU）とDFL（Distribution Focal

Loss）を，クラス分類には，BCE（Binary Cross Entropy）

を採用している．また，アンカーフリー方式への移行によ

り，不定形な対象への柔軟な対応を実現している．

3.2 Coordinate Attention

一般的なチャネルアテンションでは，情報を圧縮するた

めに 2次元のGlobal Average Poolingが用いられるが，こ

の過程で空間情報が失われるという課題がある．これに対

し，Coordinate Attention（CA）は，チャネル間の依存関

係と空間情報を同時に捉えるため，空間情報を保持したま

ま，符号化する仕組みを有する．CAは，入力特徴マップ

X ∈ RC×H×W に対して，以下のように処理を行う．また，
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図 2: Coordinate Attentionの演算プロセス概要図

CAの演算プロセスの概要を図 2 に示す．

(1) 位置情報の集約

空間情報を保持するため，入力特徴マップ X ∈ RC×H×W

に対し，水平・垂直方向それぞれに独立した 1 次元平均

プーリングを適用する．

zhc (h) =
1

W

∑
0≤i≤W

xc(h, i) (1)

zwc (w) =
1

H

∑
0≤j≤H

xc(j, w) (2)

これらの式に基づき，水平方向と垂直方向の情報を集約で

きる．それらの集約結果を全チャネルおよび全空間次元

にわたって統合することで，垂直方向の空間依存関係を

保持した特徴マップ zh ∈ RC×H×1 を得ることができる．

同様に，水平方向の空間依存関係を保持した特徴マップ

zw ∈ RC×1×W を得ることができる．

(2) 空間情報の統合と次元圧縮

得られた zhと zw を結合し，サイズが C × (H +W )× 1

の統合特徴マップを得る． 得られた特徴マップに対して，

1× 1の畳み込みを行い，チャネル数を圧縮する．結果とし

て，サイズが (C/r)× (H +W )× 1の特徴マップを得る．

ここで rはチャネル数の削減率を表す．

(3) 情報の安定化と非線形変換

畳み込みによって圧縮された特徴マップに対し，バッチ

正規化と非線形活性化関数 δを適用する．これにより，学

習の安定化を図るとともに，水平・垂直方向の空間的な依

存関係を，非線形にモデル化する．この処理により，中間

特徴マップ f ∈ R(C/r)×(H+W )×1 が生成される．

f = δ(BN(Conv2d([zh, zw]))) (3)

ここで，[·, ·]は結合処理を表す．

(4) 分割とアテンションウェイトの生成

続いて，中間特徴マップ f を垂直方向の特徴 fh ∈
R(C/r)×H×1 と，水平方向の特徴 fw ∈ R(C/r)×1×W に分
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図 3: Efficient Channel Attentionの演算プロセス概要図

割する．それぞれに対して 1 × 1 畳み込み (Fh, Fw) とシ

グモイド関数 σ を適用することで，各方向のアテンション

ウェイト gh, gw を算出する．

gh = σ(Fh(f
h)), gw = σ(Fw(f

w)) (4)

(5) 出力の算出

最後に，算出された水平・垂直方向のウェイトを入力特徴

マップ X に要素ごとに乗算し，位置情報を強調した出力

XCA を得る．

x̄c(h,w) = xc(h,w)× ghc (h)× gwc (w) (5)

出力として，特定の空間情報を強調した再構成特徴マップ

XCA = [x̄1, x̄2, ..., x̄C ] ∈ RC×H×W を得る．

3.3 Efficient Channel Attention

Efficient Channel Attention（ECA）は，従来のチャネ

ルアテンションにみられる次元削減による情報の損失を回

避し，極めて少ない計算コストで，チャネル間の依存関係

を学習する手法である．この手法は，適応的なカーネルサ

イズを持つ 1次元畳み込みを用いて，局所的なチャネル間

相互作用を，直接捉えることで，パラメータ数を大幅に抑

制しつつ，効果的な特徴強調を実現する．ECAは，入力

特徴マップX ∈ RC×H×W に対して，以下のように処理を

行う．また，ECAの演算プロセスの概要を図 3に示す．

(1) 特徴の集約

まず，入力特徴マップ X に対して，空間方向（高さ H

と幅W）の Global Average Pooling（GAP）を行う．入

力特徴マップ X の成分 (i, j) におけるチャネル c の値を

xc(i, j)とすると，GAPの処理は以下の式で表せる．

vc =
1

WH

∑
0≤i≤W

∑
0≤j≤H

xc(i, j) (6)

入力特徴マップ X のチャネル数が C であるから vc ∈
R1×1×C を得る．
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(2) 適応的なカーネルサイズ kの決定

ECAの最大の特徴は，カーネルサイズ k を特徴マップ

のチャネル数 C に応じて決定することである（Selection

of k）．

k = ψ(C) =

∣∣∣∣ log2(C)γ
+
b

γ

∣∣∣∣
odd

(7)

ここで，|t|oddは tに最も近い奇数を表し，通常 γ = 2, b = 1

が用いられる．

(3) 重み付けと出力

算出された kを用いた 1次元畳み込みと，シグモイド関

数 σ により，アテンションウェイト wを生成する．

w = σ(Conv1dk(v)) (8)

得られた wを，入力特徴マップ X に対して，要素ごとに

乗算する．⊙をチャネルごとの要素積を表すとすると，以
下の式で表せる．

XECA = w ⊙X (9)

出力として，重要な特徴を持つチャネルが強調され，重要度の

低い情報が抑制された再構成特徴マップXECA ∈ RC×H×W

を得る．

4. 提案手法

本研究では，このトレードオフを解消するために，新たな

特徴融合アテンション機構 ESCFBlock（Efficient Spatial-

Channel Fusion Block）を提案する．ESCFBlockは，空間

情報の符号化に特化した Coordinate Attention（CA）と，

計算コストを最小限に抑えつつ，チャネル間の相関を捉え

る Efficient Channel Attention（ECA）の 2つの機構を並

列に統合したものである．さらに，本手法ではこれらを単

に組み合わせるだけでなく，ゲート付き残差接続を導入す

ることで，入力画像に応じて空間情報と，チャネル情報の

重要度を動的かつ適応的に調整することを可能にした．こ

れにより，YOLOv8が本来持つ推論速度を損なうことな

く，炎や煙の微細な特徴を強調し，複雑な背景ノイズと明

確に分離することが可能となる．

4.1 統合のアプローチと設計思想

前章で述べたように，CAと ECAは計算コストを抑え

つつ，特徴を強調する点では，共通しているが，情報の集

約方法において，明確なトレードオフが存在する．

■ CAの特性：水平・垂直方向のプーリングにより，空

間情報の保持に優れるが，チャネル間の複雑な相関関

係を捉える能力は，限定的である．

■ ECAの特性：局所的な相互作用により，チャネル間

の相関の識別能力は高いが，空間情報を圧縮すること

により，正確な座標情報を保持できない．

複雑な背景が存在する実環境下の火災検知において，誤

検知を抑制し高い信頼性を確保するためには，炎や煙特有

のテクスチャ情報を詳細に捉えることと，背景ノイズから

対象を分離するための空間情報を正確に保持することの両

立が不可欠である．この観点において，空間情報の符号化

に長けた CAと，チャネル間の特徴抽出に特化した ECA

は，互いの弱点を補う相補関係にあるといえる．そこで，

本研究では，これら 2つの機構を並列に統合した新たなア

テンション機構を構築する．本手法の目的は，YOLOv8が

有するリアルタイムな推論速度を損なうことなく，微細な

特徴の識別能力と位置特定精度を向上させることにある．

4.2 提案手法：ESCFBlock

ESCFBlock(Efficient Spatial-Channel Fusion Block)は，

CAと ECAの特性を最大限に引き出すため，単なる直列

構造ではなく，並列構造とゲート付き残差学習を統合した

設計となっている．以下に，処理過程を示す．また，図 4

に，提案手法である ESCFBlockの概要を示す．

(1) 特徴抽出

まず，入力特徴マップX ∈ RC×H×W を得ると，CAブ

ランチ（図 4 1O）は空間情報を重視した特徴マップ XCA

を，ECAブランチ（図 4 2O）はチャネル間の相関を重視し

た特徴マップ XECA をそれぞれ独立して抽出する．

(2) チャネル結合

(1)で抽出された 2つの特徴マップはチャネル方向に結

合され，チャネル数 2C の特徴マップ fconcat ∈ R2C×H×W

を生成する．

(3) 相互作用の学習と次元削減

(2)で得られた特徴マップ fconcat に対して，1 × 1畳み

込み層を適用し，チャネル数を 2C から C へと削減する．

また，空間情報とチャネル情報という異なる性質を持つ

特徴量間の相互作用を学習させ，1 つの融合特徴マップ

X̄ ∈ RC×H×W を得る．ここで，計算の安定性を図るため，

この層では，活性化関数を適用せず，情報の線形融合にと

どめている．

(4) ゲート付き残差接続

本手法では，入力特徴マップX に対して，融合特徴マッ

プ X̄ を加算する際，学習可能なスケーリング係数 αを介

した，ゲート付き残差接続を採用する．

XESCF = X + α · X̄, α = σ(gate) (10)

ここで，gate ∈ Rは学習可能なパラメータであり，シグモ
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図 4: 提案手法：ESCFBlockの演算プロセス概要図

イド関数 σを適用することで，係数 αを (0, 1)の範囲に正

規化している．このゲート機構の導入には，以下の 2つの

重要な意義がある．

■ 適応的な特徴選択：学習可能な係数 αを導入すること

で，入力特徴マップから生成されたアテンションの重

要度（寄与率）を最適化し，必要な特徴のみを適応的

に強調することが可能である．

■ 学習の安定化：αの値を調整することで，アテンショ

ンブランチからの情報の寄与率を適応的に制御でき

る．特に，学習初期においては，未学習の特徴マップ

が，YOLOv8のネットワークの挙動を乱すことを防

ぎ，安定した勾配の伝播を保証する役割を果たす．

本手法では，YOLOv8の事前学習済み重みがもつ汎用

的な特徴抽出能力を維持しつつ，ESCFBlockを段階的に

適応させるために，特徴融合層の重みとバイアスをすべて

0で初期化している．この状態において，学習開始直後の

融合特徴マップ X̄ は 0となり，ESCFBlockの初期出力は

XESCF = X + α · 0 = X となる．これにより，未学習の

ESCFBlockが YOLOv8のネットワーク全体に悪影響を及

ぼすことを防ぐことができる．また，学習の進行とともに，

αおよび融合層の重みが更新され，徐々に最適な特徴強調

が追加される仕組みとなっている．

5. 実験

5.1 実験設定

提案手法の評価を行うため，火災および煙の検知を目的と

して構築された公開データセットである D-fireデータセッ

ト [6,20]を用いた．本データセットは，21,527枚の画像で

構成されており，そのアノテーションには煙（Smoke）と

炎（Fire）の 2クラスが含まれる．このうちの 8割（17,221

枚）を訓練用，2割（4,306枚）をテスト用とした．

ベースモデルには，YOLOv8 [9]を採用した．また，推

表 1: 実験環境

項目 仕様

CPU Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz

GPU NVIDIA GeForce GTX 1080 Ti (11GB VRAM)

RAM 32GB

OS Linux (Ubuntu 24.04 系 / Kernel 6.8.0)

python 3.9.25

Ultralytics YOLO 8.3.240

Library PyTorch 2.7.1+cu118

CUDA 11.8

論速度と検出精度のバランスの取れた，中程度のモデルサ

イズである YOLOv8mを用いた．

また，本研究において，すべての実験は，表 1に示す計

算資源で実施した．

5.2 評価指標

本研究では，提案手法の有効性を定量的に評価するため，

物体検知タスクで一般的に用いられる以下の 4つの指標を

採用した．適合率（Precision），再現率（Recall），F1 Score，

および平均適合率（mAP: mean Average Precision）とい

う 4つの評価指標を使用する．

適合率（Precision）は，モデルがポジティブ（炎・煙）

と予測したサンプルのうち，実際にポジティブであった割

合を示し，誤検知の少なさを評価する指標である．一方，

再現率（Recall）は，実際にポジティブである全サンプル

のうち，正しく検出されたサンプルの割合を示し，検出の

網羅性を評価する指標である．

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

上記の式において，TP（True Positive）は真陽性，FP

（False Positive）は偽陽性，FN（False Negative）は偽陰

性をそれぞれ表す．
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また，適合率と再現率はトレードオフの関係にあるため，

両者の調和平均である F1 Scoreを用いて総合的な性能バ

ランスを評価する．

F1 = 2× Precision×Recall

Precision+Recall
(13)

平均適合率（AP: Average Precision）は，適合率-再現

率曲線（PR曲線）の下側の面積として定義され，検出の

閾値を変化させた際の平均的な適合率を表す指標である．

APが高いほど，あらゆる再現率のレベルにおいて安定し

て高い適合率を維持できていることを意味する．さらに，

mAP（mean Average Precision）は，対象とする全クラス

（本研究では炎と煙）について算出した APの平均値であ

り，モデル全体の総合的な実力を示す指標となる．本研究

では，IoU（Intersection over Union）の閾値が 0.5のとき

のmAP@50と，0.5から 0.95まで 0.05刻みで変化させた

平均値である mAP@50-95を採用した．

また，火災検知においては，火災の発見漏れを防ぐこと

が重要となる．そのため本研究では，単なる精度の高さだ

けでなく，見逃しの少なさを示す再現率（Recall）の向上

を重要な評価基準として重視している．

5.3 挿入位置の比較評価

5.3.1 概要

YOLOv8mのネットワーク内の 7か所（ 1OHead部 P3

層， 2OBackbone部 P3層， 3OHead部 P4層， 4OBackbone

部 P4 層， 5OHead 部 P5 層， 6OSPPF モジュール直前，
7OSPPFモジュール直後）に挿入した（図 5）．YOLOv8m

に対し，D-fireを用いて学習を行ったものを Baselineとす

る．また，ESCFBlockをそれぞれの位置に挿入したモデ

ルについても同様に D-fire を用いて学習を行い，比較検

証を行った．なお，モデルの評価には学習プロセスにおい

て，検証データに対し，最も高い性能を示した重みファイ

ル（best.pt）を採用した．

モデルの比較検証を公平に行うため，Baseline および

ESCFBlockを挿入した全てのモデルに対して，共通のハ

イパーパラメータを用いて学習を実施した，詳細な設定を

表 2に示す．ここで，Initial Learning Rate，Momentum

および Decayについては，Douらによる YOLOv5を用い

た火災検知モデルの構築の研究 [11]に基づき設定した．

5.3.2 結果・考察

実験結果を表 3に示す．これより，ESCFBlockを 5OHead

部 P5 層（Head-P5）に挿入したモデルが，mAP@50-95

（0.472）および F1 Score（0.760）において，Baselineを上

回る最高値を記録したことが確認できる．以下に，各指標

および挿入位置の観点から，本構成の有効性を分析する．

まず，検出の網羅性を示す Recallにおいて，Head-P5は

Baselineの 0.731から 0.743へと改善（+0.012）を示した．

火災検知タスクにおいて，見逃し（偽陰性）は致命的な被

表 2: ハイパーパラメータ設定

パラメータ 設定値

Model Size 640× 640

Batch Size 16

Initial Learning Rate 0.01 (lr0)

Momentum / Decay 0.937 / 0.0005

Epochs 50

Patience 15

Close mosaic 10

害に直結するため，Recallの改善は最も重視すべき成果で

ある．これは，ESCFBlockが火災特有の微細な特徴を効

果的に強調し，検出漏れの低減に寄与したことを実証して

いる．

次に，総合的な性能バランスを示すF1 Scoreにおいても，

0.757から 0.760への改善が確認された．一般に，Recallと

適合率（Precision）はトレードオフの関係にあり，一方を向

上させると他方が低下する傾向にある．しかし，Head-P5

では Precisionの低下を最小限（0.785 → 0.778）に抑えつ

つ，総合性能を向上させることに成功している．これは，

実運用において過度な誤報を抑制しつつ，確実な検知を実

現できることを意味する．

挿入位置について考察すると，Backbone部のような低

次特徴層への挿入よりも，Head部のような高次元特徴層

への挿入が有効であることが明らかとなった．Backbone

部ではエッジやテクスチャなどの局所的な特徴が支配的で

あるのに対し，Head部（特に P5層）では物体としての意

味的情報が形成される．火災検知においては，単純な輝度

や色情報だけでなく，意味を含めた判断が必要となるため，

深層におけるアテンションによる特徴強調が，性能向上に

最も寄与したと推察される．

5.3.3 アテンション寄与率 αの分析

本節では，ESCFBlock内のゲート付き残差接続におけ

る学習可能なスケーリング係数 α の挙動を分析する．な

お，事前学習済みモデルへの急激な干渉を避けるため，全

条件において α の初期値を一律 0.1 に設定した．

実験の結果，α の最終値は 2OBackbone-P3 で最大値

（0.163）を記録した．一方，最高精度を達成した 5OHead-

P5 では適度な上昇（0.130）にとどまった．この「寄与率

の高さ」と「最終的な検出精度」の不一致は，ネットワー

クの階層によって，アテンション機構が果たす役割が異な

ることを示唆している．

Backbone-P3における α の増大は，炎や煙の質感（色

やテクスチャ）といった低次特徴の強調が，損失低下に寄

与したことを意味する．しかし，初期層で視覚的特徴を過

度に強調することは，夕日や雲など，炎や煙に類似した背

景ノイズまでも増幅させ，結果として誤検知（Precisionの

低下）を招く要因となった．
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図 5: ESCFBlockの挿入位置

表 3: ESCFBlockの各挿入位置における精度比較（太字は最高値を示す）

挿入位置 Params Precision (P)↑ Recall (R)↑ F1 Score↑ mAP@50↑ mAP@50-95↑ α

1OHead-P3 25,938,532 0.795 0.724 0.758 0.787 0.468 0.059

2OBackbone-P3 25,938,532 0.788 0.712 0.744 0.788 0.462 0.163

3OHead-P4 26,180,860 0.784 0.729 0.756 0.794 0.467 0.079

4OBackbone-P4 26,180,860 0.774 0.725 0.749 0.784 0.462 0.102

5OHead-P5 26,584,468 0.778 0.743 0.760 0.792 0.472 0.130

6Opre-SPPF 26,584,468 0.784 0.718 0.750 0.782 0.462 0.115

7Opost-SPPF 26,584,468 0.779 0.708 0.742 0.783 0.461 0.061

Baseline 25,857,478 0.785 0.731 0.757 0.790 0.471 -

表 4: 乱数シード固定による試行結果の平均

Model Precision (P)↑ Recall (R)↑ F1 Score↑ mAP@50↑ mAP@50-95↑ α

Head-P5 0.784 0.735 0.759 0.790 0.471 0.131

Baseline 0.788 0.729 0.757 0.793 0.474 -

表 5: アブレーションスタディ（太字は最高値を示す）

Method Params Precision (P)↑ Recall (R)↑ F1 Score↑ mAP@50↑ mAP@50-95↑
YOLOv8m + ECA 26,190,412 0.790 0.729 0.758 0.791 0.470

YOLOv8m + CA 26,252,687 0.788 0.727 0.756 0.792 0.470

YOLOv8m + ESCFBlock 26,584,468 0.787 0.740 0.763 0.793 0.472

YOLOv8m(Baseline) 25,857,478 0.787 0.734 0.760 0.793 0.472

対照的に，Head-P5は物体検出の最終判断直前の階層に

位置し，より高次な意味的情報を扱う．そのため，単なる

特徴の強調ではなく，画像全体の文脈に基づいた判断の洗

練に，アテンションが機能したと考えられる．

以上の結果より，火災検知においては，低次特徴を単純

に強調するよりも，高次の意味情報に基づいて特徴を選別・

統合するアプローチが，誤検知の抑制と検出能力の最大化

に有効であると結論付けられる．

5.4 追加実験による信頼性の評価

5.4.1 乱数シード固定による統計的な性能評価

前節の実験で最も優れた性能を示した Head-P5構造が，

特定の初期条件に依存した偶発的なものではないことを

検証するため，乱数シード (seed)を固定した 5回の独立

試行による追加実験を行った．比較対象は Baselineとし，

ESCFBlockが火災検知において有効なアテンション機構で

あるかを分析する．なお，本実験においても，検証データに

対して最も高い性能を示した重みファイル（best.pt）を用

いて比較を行った．表 4に両モデル（BaselineとHead-P5

構造）の 5回の独立試行を行った結果の，各指標の平均値
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図 6: 定性評価

左：GT（正解データ）， 中央：Baeline， 右：Oursによる推論結果

を示す．

総合的な性能バランスを示すF1 Scoreにおいては，Head-

P5は平均 0.759を記録し，Baseline と同等の高い水準を

維持したまま，Recallの向上（0.729 → 0.735）に成功して

いる．以上の統計的評価により，Head-P5構成は，見逃し

の少ない確実な火災検出という本研究の目的に対し，単発

の実験結果だけでなく，統計的にも信頼性の高い手法であ

ることが証明された．

5.4.2 アブレーションスタディ

提案手法 ESCFBlockの構成要素である各アテンション

機構の寄与を明らかにするため，YOLOv8mを Baselineと

し，CAのみ（YOLOv8m + CA），ECAのみ（YOLOv8m

+ ECA），および提案手法（YOLOv8m + ESCFBlock）を

搭載したモデルについて比較検証を行った．なお，すべて

のモデルにおいてアテンション機構の挿入位置は Head-P5

とし，ゲート付き残差接続を適用した．また，α の初期値

は一律 0.1 ，他のハイパーパラメータは，表 2の通りであ

る．結果を表 5に示す．

実験結果より，ESCFBlockを搭載したモデルが，Recall

（0.740），F1 Score（0.763），および mAP@50-95（0.472）

において，単体のアテンション機構を用いたモデル（CAの

み，ECAのみ）を上回る性能を示した．特に，Recallにお

いては Baselineと比較して CA単体では 0.727，ECA単体

では 0.729と低下したことに対し，ESCFBlockでは 0.740

と改善が確認された．

この結果は，空間情報に特化した CAと，チャネル情報

に特化した ECAが，単体では捉えきれない火災の特徴を，

並列統合によって相互補完的に捉えていることを裏付けて

いる．すなわち，提案手法における「空間・チャネル情報

の融合」と「ゲート付き残差接続による適応的な強調」が，

火災検知の性能向上に有効な要素であることが実証された．

5.5 定性評価

最後に，定性評価を行う．提案手法の有効性を視覚的に

検証するため，Baseline（YOLOv8m）と提案手法（Ours:

Head-P5への ESCFBlockの挿入モデル）による推論結果

の比較を行った．図 6に，結果を示す．左列は正解データ

（Ground Truth），中央列は Baselineによる推論結果，右

列は提案手法による推論結果である．推論対象は，D-fire

データセットの画像であり，Baselineでは検知できなかっ

た煙が，提案手法では，検知できていることがわかる．

6. 結論

本研究では，YOLOv8をベースとした高精度な火災検知

モデルの構築を目的とし，空間情報とチャネル情報を適応

的に統合する新たなアテンション機構 ESCFBlock（Effi-

cient Spatial-Channel Fusion Block）を提案した．本手法

は，Coordinate Attention と Efficient Channel Attention

を並列配置し，ゲート付き残差接続を導入することで，計

算コストの増大を最小限に抑えつつ，火災特有の微細な特

徴を強調するアーキテクチャである．

D-fireデータセットを用いた評価実験の結果，ESCFBlock

をHead部の P5層（Head-P5）に導入したモデルが最も高

い性能を示した． 特に，火災検知において重要視される

Recallにおいて，Baselineと比較して改善が確認された．

これは，提案手法が複雑な背景ノイズの中から炎や煙の兆

候を網羅的に捉え，実運用における「見逃しリスク」を低

減できることを示唆している．また，アブレーションスタ

c⃝ 1959 Information Processing Society of Japan 8



情報処理学会研究報告
IPSJ SIG Technical Report

ディにより，空間情報とチャネル情報を相互補完的に統合

することの有効性が実証された．

今後の展望として，より多様な環境下（悪天候や夜間な

ど）におけるロバスト性の検証や，バウンディングボック

スの回帰精度のさらなる向上が挙げられる．また，発生初

期の極小な火種や煙に対しても確実に検知できる感度の追

求が不可欠である．
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